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Question 1. (15 points) (10 points) 

 

Let’s consider the “second” Faraday experiment, 

this time from the viewpoint of Faraday’s equation. 

In this experiment, Faraday moved the magnetic 

field (the magnet) to the left, holding the loop still. 

Suppose that at time 𝑡 = 0 the magnetic field �⃗⃗�  in a 

direction into the paper fills the region of  𝑥 < 0. 

As we know, the current flowed through the (red) 

loop so that some work was done. 

 

1. Is it the magnetic field which does the work? (1 point) 

2. Where is 
𝜕�⃗⃗� 

𝜕𝑡
 nonzero? Sketch 

𝜕�⃗⃗� 

𝜕𝑡
 schematically (qualitatively) in the figure. Don’t forget 

about its direction! (5 points) 

Tip: approximate graphically the abrupt change in the �⃗⃗� -field at 𝑥 = 0 (i.e. at the magnet 

edge) by any smooth function, draw its derivative, and then make the smooth function sharper 

and sharper. 

3. Exploit the analogy between Faraday’s and Ampère’s law to sketch qualitatively the 

electric field. (5 points) (4 points) 

4. At which segments of the loop is the work done on electrons? Explain why. (2 points) 

5. Now apply the Lenz rule to establish the current direction. Does the current direction 

coincide with what you predicted in #3? (2 points) 

 

Model answers (Griffiths, Problem 7.20 modified) (15 points) 

 

1. No, magnetic field never works. (1 point) 

 

2. 
𝜕�⃗⃗� 

𝜕𝑡
 is nonzero along the edge of the magnetic field 

(1 point) 

Direction is +𝑧 (1 point).  

See the figure for the shape (3 points) 

(Strictly speaking, its analytical form is a 𝛿-function  

𝐵 ∙ 𝛿(𝑡), a derivative of a Heaviside step function). 

 

Note added: in the exam chat, it was allowed to 

draw the derivative in a separate graph, with the 

diction in space indicated. 

 

3. The �⃗� -field resulting from −
𝜕�⃗⃗� 

𝜕𝑡
 is analogous to 

the �⃗⃗� -field from a current sheet in the 𝑦𝑧 plane 

under Ampère’s law,  

−
𝜕�⃗⃗� 

𝜕𝑡
⇔ 𝜇0𝑱  

with the (surface) current �⃗⃗�  running into -𝑧 direction (considering the minus sign). (1 point) 

 

We know (see Example 5.8 and Lecture 19), that the magnetic field from a current sheet is 

directed parallel to the current sheet and its magnitude is constant at any point. (1 point) 
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Therefore, the electric field in our example runs parallel the magnet edge at +𝑦 direction for 

𝑥 < 0 (i.e. inside the magnetic field) and -𝑦 direction for 𝑥 > 0 (i.e. outside the magnetic 

field). (3 points) 

 

4. The electric field does the work on the electrons only at the vertical segments of the loop. 

(1 point) 

In other segments, the electrons are confined in the direction of the electric field so that they 

cannot move into this direction. (1 point) 

 

5. According to the Lenz law, the current induced in the loop should have such a direction, 

that the magnetic field, created by this current, counteracts the change in the flux. The flux is 

decreasing as the �⃗⃗� -field is moved to the left; therefore, the magnetic field of the loop should 

be directed to the same direction as �⃗⃗�  which necessitates the clockwise current. (1 point) 

The current direction coincides with the direction of the electric field in #3, i.e. clockwise. (1 

point) 

 

NB: Later in the course we will see how this problem can be elegantly solved (in one line!) by 

applying Lorentz transformations to the electromagnetic field. 

 

Typical mistakes: 

- Not realizing that one can treat J similarly to dB/dt. 

- Not knowing where work is being done on the loop: many say it is done everywhere for 

there to be a current. 

- |dB/dt| is nonzero at points where it does not change at all (e.g. the entire loop, everywhere 

where there is a non-vanishing field, everywhere there is a vanishing field) 

- Confusing the direction of motion of the magnet with the direction of the derivative (dB/dt 

points in the direction in which the magnet is moving) 

- Drawing the electric field in circles around the vertical segments.  

 

For most of the students, this conceptual problem appears by far the most difficult to solve 

(however, there were few students offered right answers!). Therefore, I decided to take off 

subquestions #4 and #5, and decrease the number of points for subquestion #3 to 4 points. 

This results in the maximum points awarded for this problem to 10, or, equivalently, the 

maximum number of points was reduced to 50. Who did present correct answers, don’t worry: 

your points remain with you. 
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Question 2. (10 points) 

A pendulum consists of a light rod suspended on a pivot, 

and a strong neodymium magnet at the lowest end of the 

rod (see the figure). Near the point of equilibrium, a 

massive copper block is situated at the trajectory of the 

pendulum. The pendulum is taken out of the equilibrium 

position and released.  

1. Would the speed 𝑣 at the lowest position be 𝑣2 2⁄ =
𝑔ℎ as followed from the conservation of mechanical 

energy? Explain your answer. (3 points) 

2. How does the “lost” energy manifest itself? In other words, to which form of energy is the 

initial potential energy eventually transformed? (1 point) 

3. Now the copper block is cut onto thin vertical slices which are isolated 

with negligibly thin layers of a dielectric. What changes in the pendulum 

motion as compared to #1? Explain your answer with a drawing. (2 points) 

4. Now the copper block is cut onto thin horizontal slices which are isolated 

with negligibly thin layers of a dielectric. What changes in the pendulum 

motion as compared to #1? Explain your answer with a drawing. (2 points) 

5. Now the initial (unsliced) copper block is replaced with a similar block made of graphite. 

What changes in the pendulum motion? Explain your answer. (2 points)  

Tip: you might consult Table 7.1 of Griffiths. 

 

Model answers (10 points) 

1. As the magnet begins to approach the copper block, the increasing in time flux of the 

magnetic field induces eddy’s currents in copper. (1 point) 

According to the Lenz law, these currents flow in a direction to compensate the change in flux, 

generating a magnetic field that is opposite in direction to the magnet one. This creates a “drag” 

force on the magnet.            (1 point) 

Faster the magnet moves, faster the flux changes, stronger the “drag” force so that the speed 

prescribed by the conservation of mechanical energy low, will not be reached.                                                 

(1 point) 

In the extreme case, the magnet would stop still near the front edge of the copper block (see 

https://youtu.be/sENgdSF8ppA).  

 

2. According to Joule’s law, to heat. (1 point) 

 

3. In the first approximation, the (changing) magnetic field is orthogonal to the 

front surface of the copper block. To compensate for the increase of this field, 

eddy’s currents should have a circular direction in the plane parallel to the from 

surface.             (1 point) 

Because copper is non-magnetic, the magnetic field penetrates to the slices 

beneath the front surface. Therefore, cutting the block in vertical slices does not 

disturb eddy’s currents too much. Hence, little change in the pendulum motion as compared to 

the bulk block. (1 point) 

 

4. Now eddy’s currents are cut into smaller pieces by the dialectic which 

disturbs the circular currents. (1 point) 

Hence, smaller deceleration of the pendulum and higher speed at the lower 

point.                                      (1 point) 
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5. Conductivity of graphite is a factor of 1000 lower than copper. Therefore, the same emf will 

create lower eddy’s currents. (1 point) 

Hence, lower counteracting magnetic field, hence lower the drag force and higher the speed at 

the lowest point.                            (1 point) 

 

 

Typical mistakes: 

Q2.2: naming the energy in the Eddy currents themselves. Strictly speaking, it is not correct 

because of “eventually”, but we still gave points. 

Q2.3: difficulty in visualization the system (even despite the drawing given). The directions 

of the Eddy currents were drawn in the plane of the paper for a large portion of the exams. 

Q2.5: “a higher resistivity leads to more heat and thus more damping” – the reason of 

damping is eddy’s currents and their magnetic field which both are weaker for a higher 

resistance material. 
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Question 3. (15 points) 

A square loop of wire, of side a, lies at a distance a from one of two 

long wires, a distance of a apart, and in the same plane. (Actually, the 

long wires are sides of a large rectangular loop, but the short ends are 

so far away that they can be neglected.) A clockwise current I in the 

small square loop is gradually increasing: 𝑑𝐼/𝑑𝑡 = 𝑘 (𝑘 is a constant). 

1. Find the mutual inductance of the loops. (7 points) 

2. Find the emf induced in the big loop. (2 points) 

3. What is the direction of the magnetic field produced by the small 

loop? (2 points) 

4. Which way will the induced current flow in the big loop? (2 points) 

5. How do the answers change if the separation between the long wires 

is not a but zero? (2 points) 

 

Model answers (Problem 7.23 modified): (15 points) 

1. (7 points) 

It is hard to calculate M using a current in the little loop, so, exploiting the equality of the 

mutual inductances, we will find the flux through the little loop when a current I flows in the 

big loop  

Φ = 𝑀𝐼        (1 point) 

The field of one long wire is 𝐵 =
𝜇0𝐼

2𝜋𝑠
 so that the flux from the right long wire 

Φ𝑟 =
𝜇0𝐼

2𝜋
∫

1

𝑠

2𝑎

𝑎

𝑎 𝑑𝑠 =
𝜇0𝐼𝑎

2𝜋
ln 2                       (2 points) 

The flux from the left long wire 

Φ𝑙 = −
𝜇0𝐼

2𝜋
∫

1

𝑠

3𝑎

2𝑎

𝑎 𝑑𝑠 = −
𝜇0𝐼𝑎

2𝜋
ln

3

2
                (2 points) 

The minus sign is because the direction of the magnetic field is the opposite.  

The total flux is 

Φ = Φ𝑟 + Φ𝑙 =
𝜇0𝐼𝑎

2𝜋
ln

4

3
                                    (1 point) 

𝑀 =
𝜇0𝑎

2𝜋
ln

4

3
                                                           (1 point) 

        

2. (2 points) 

ℰ = −𝑀
𝑑I

𝑑𝑡
= −𝑀𝑘             (1 point) 

ℰ = −
𝜇0𝑘𝑎

2𝜋
ln

4

3
                   (1 point) 

3. The current in the small loop flows clockwise. This means that the magnetic field of the 

small loop points into the page inside the loop (1 point) 

and out of the page outside the loop                 (1 point) 
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4. The magnetic field of the small loop increases with time. So the increase also points out of 

the page. The current induced in the big loop should be oriented as to oppose this change (Mr 

Lenz). Therefore, the induced field will point into of the page. Hence, the current in the big 

loop will be oriented clockwise. (2 points) 

 

5. This is equivalent to upwards and downwards currents in the big loop to coincide so that 

the total current is zero. Therefore, all quantities are equal zero. (2 points) 

 

 

Typical mistakes: 

3.1: Failure to realise that the flux contributions from the left and right wires are different so 

that the flux from one wire was multiplied by two. 

Failure to realise that the fluxes have opposite signs 

3.3: Forgot to give the direction of the field outside the small loop. 

3.4: Wrong current direction because of failure in 3.3. 

3.5 Failure to realise that the big loop isn’t a loop anymore, and no current would flow in it.  
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Question 4. (15 points) 

A battery with potential difference ℰ charges an ideal circular 

parallel-plate capacitor of capacitance 𝐶, plate radius 𝑟0 and 

separation between the plates 𝑑, through a wire with resistance 𝑅. 

The total charge on each plate as a function of time is: 𝑄(𝑡) =

𝐶ℰ(1 − 𝑒−𝑡 𝑅𝐶⁄ ). Consider the surface charge density uniform on the 

plates. Find:  

1. Displacement current density (3 points) 

2. The flux of the electric field (clarification was posted in the chat) 

between the plates as a function of time (2 points) 

3. The rate of change of the flux of the electric field between the plates as a function of time 

(1 point) 

4. The magnetic field inside the capacitor at a distance 𝑟 from the central axis (5 points) 

5. The instantaneous (i.e. at a given moment of time) energy of the magnetic field inside the 

capacitor (4 points) 

 

 

Model answers (Problem 7.34 modified, also considered at Lecture 21):  (15 points) 

𝟏. 𝐉 𝑑 ≡ 𝜖0

𝜕�⃗� 

𝜕𝑡
= 𝜖0

𝜕

𝜕𝑡
(
𝜎

𝜖0
�̂�)                                   (1 point) 

=
𝜕

𝜕𝑡
(
𝐶ℰ(1 − 𝑒−𝑡 𝑅𝐶⁄ )

𝜋𝑟0
2  �̂�) =

𝐶ℰ

𝜋𝑟0
2

𝑒−𝑡 𝑅𝐶⁄

𝑅𝐶
�̂�         (1 point) 

=
1

𝜋𝑟0
2

ℰ

𝑅
𝑒−𝑡 𝑅𝐶⁄  �̂�                                                       (1 point) 

(3 points in total. No vector – minus 1 point) 

BTW, here it is apparent that the value is the current density. The displacement current 𝐼𝑑 can 

be found by integrating the current density over the area 𝜋𝑟0
2: 𝐼𝑑 =

ℰ

𝑅
𝑒−𝑡 𝑅𝐶⁄  

 

𝟐.  Φ𝐸 = ∫ �⃗� ∙ 𝑑�⃗� 
𝑆

=
𝐶ℰ(1 − 𝑒−𝑡 𝑅𝐶⁄ )

𝜖0𝜋𝑟0
2 ∫ 𝑑𝑎

𝑆

    (1 point) 

=
𝐶ℰ

𝜖0

(1 − 𝑒−𝑡 𝑅𝐶⁄ )                                                     (1 point) 

(2 points in total) 

 

𝟑.  
𝑑Φ𝐸

𝑑𝑡
=

𝐶ℰ

𝜖0𝑅𝐶
𝑒−𝑡 𝑅𝐶⁄ =

ℰ

𝜖0𝑅
𝑒−𝑡 𝑅𝐶⁄                   (1 point) 

 

4. From the symmetry, the magnetic field has a circumferential 

direction.                                      (1 point) 
We take the circular Amperian loop with radius 𝑟 which plane is 

parallel to the plates and which centre coincides with the axis of 

symmetry, as we did at lectures. (1 point) 
 

Now we use Ampère-Maxwell’s law 

∮ �⃗⃗� ∙ 𝑑𝒍 = 𝜇0𝜖0

𝜕

𝜕𝑡
∫ �⃗� ∙ 𝑑�⃗�  

where we have already calculated the derivative at the right-hand part. However, we should 

recall that not all the flux penetrates the Ampèrian loop but only a fraction 𝑟2 𝑟0
2⁄ . (1 point) 
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∮ �⃗⃗� ∙ 𝑑𝒍 = 𝐵 ∙ 2𝜋𝑟 = 𝜇0𝜖0

𝑟2

𝑟0
2

ℰ

𝜖0𝑅
𝑒−𝑡 𝑅𝐶⁄      (1 point) 

�⃗⃗� =
𝜇0ℰ

2𝜋𝑅
𝑒−𝑡 𝑅𝐶⁄

𝑟

𝑟0
2 �̂�   (1 point.Note that the direction could have been defined above) 

 

𝟓.  𝑊𝑚𝑎𝑔 =
1

2𝜇0

∫𝐵2𝑑𝜏 =
1

2𝜇0
(
𝜇0ℰ

2𝜋𝑅
𝑒−𝑡 𝑅𝐶⁄

1

𝑟0
2)

2

∭𝑟2 𝑟 𝑑𝑟𝑑𝜑𝑑𝑧     (2 points) 

=
𝜇0

2

ℰ2

(2𝜋)2𝑅2

1

𝑟0
4 𝑒−2𝑡 𝑅𝐶⁄

𝑟0
4

4
2𝜋𝑑                                                                      (1 point) 

=
𝜇0

16

ℰ2𝑑

𝜋𝑅2
𝑒−2𝑡 𝑅𝐶⁄                                                                                                  (1 point) 

 

 

Typical mistakes: 

- missing direction of vectors -- by far the most common mistake 

- not cancelling out the variable “C” when it was present in both the numerator and 

denominator. 

- Introducing variables which were not given (e.g. the area A instead of 𝜋𝑟0
2) 

- Failure to take a derivative 

- The Jacobian factor missing for integration in cylindrical coordinates and/or ignoring the ‘r’ 

dependence of B. 
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